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Abstract. Extensive band structures have been computed for cubic arrays of rigid spheres and cubes in
air. Complete stop bands are obtained for the face-centered-cubic (fcc) structure; however, there is no
gap for the body-centered-cubic (bcc) and simple-cubic (sc) structures. These gaps start opening up for
a filling fraction of ≈ 54% (27%) for spherical (cubic) inclusions and tend to increase with the filling
fraction, exhibiting a maximum at the close-packing. We also propose a tandem structure that allows the
achievement of an ultrawideband filter for environmental or industrial noise in the desired frequency range.
This work is motivated by the recent experimental measurement of sound attenuation on the sculpture,
by Eusebio Sempere, exhibited at the Juan March Foundation in Madrid (Nature 378, 241 (1995)) and
complements the corresponding theoretical work (Appl. Phys. Lett. 70, 3218 (1997)).

PACS. 43.40.+s Structural acoustics and vibration – 63.20.-e Phonons in crystal lattices – 42.45.Fx
Diffraction and scattering

1 Introduction

An architectural proposal of Yablonovitch [1] and a con-
ceptual hypothesis of Sajeev John [2] triggered the pri-
mary interest in photonic crystals. These are periodic
dielectric structures that exhibit a band gap, by anal-
ogy with the electronic band gap in semiconductor crys-
tals. Within these photonic band gaps, the atoms are de-
nied spontaneously absorbing and re-emitting light; this
has signalled practical interest to produce highly efficient
lasers. From the fundamental point of view, the existence
of complete or pseudo gaps in a weakly disordered sys-
tem is paramount in determining the transport properties
and realizing the Anderson localization of light. Since the
prominent phenomena emerging from the physics of pho-
tonic crystals are all consequences of the existence of a
photonic band gap, much of the research effort has been
dedicated to the search for such photonic crystals [3].

Within a few years of the emergence of photonic
crystals, a growing interest in the analogous studies on
“phononic crystals” has been seen [4–17]. These are the
two- and three-dimensional periodic elastic/acoustic com-
posites that exhibit spectral gaps in the band structure. In
analogy to the photonic crystals, the prime interest of the
band theorists has been the occurrence of complete elas-
tic/acoustic band gaps (or stop bands). The term com-
plete refers to the gaps which exist independent of the

a Permanent address: Institute of Physics, University of
Puebla, Box J–48, Puebla 72570, Mexico.
e-mail: manvir@sirio.ifuap.buap.mx

b URA CNRS No. 801

polarization of the wave as well as its direction of propaga-
tion. Within these gaps the sound, vibrations and phonons
are all forbidden. This is of interest for applications such
as elastic/acoustic filters, improvements in the design of
transducers, and noise control; as well as for pure physics
concerned with the Anderson localization of sound and vi-
brations [18,19]. Piezoelectric and piezomagnetic compos-
ites are already known to have long standing applications
as medical ultrasonics and naval transducers; as well as
for related tasks in medical imaging [20,21]. Such com-
posites were initially fabricated for sonar applications and
are now widely used for ultrasonic transducers.

It is interesting to remark that in all artificial peri-
odic structures –dielectric composites, elastic composites,
magnetic composites, etc.– the existence of complete gaps
is attributed to the joint effect of the Bragg diffraction
and the Mie scattering. The destructive interference due
to Bragg diffraction accompanied by the Mie resonances
due to strong scattering from individual spheres is the
conceptual base of the complete gaps. The latter becomes
effective when the diameter of the sphere is close to an
integer multiple of wavelength [3].

In the quest for achieving complete gaps one must
resort to the band structure calculations. These have
been performed for several geometries of periodic elas-
tic composites and for various types of waves [4–17].
One-dimensional (1D) periodic systems (superlattices,
for example) allow longitudinal, transverse, and mixed
modes. Two-dimensional (2D) composites permit the
propagation of pure transverse and mixed modes indepen-
dently; no longitudinal modes are possible, however. In
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three-dimensional (3D) composites the longitudinal and
transverse modes are strongly coupled, thus complicating
the nature of the eigenmodes and the corresponding com-
putation. A drastic simplification arises in the case of liq-
uids and gases, which support only dilatational (acoustic)
waves. In what follows we will be concerned with such a
single polarization of dilatational waves.

The present work is motivated by the recent experi-
mental measurements of sound attenuation on the sculp-
ture, by Eusebio Sempere, exhibited at the Juan March
Foundation in Madrid [22]. It consists of a periodic dis-
tribution of hollow stainless steel cylinders, with diameter
of 2.9 cm and a unit cell of edge 10 cm. The cylinders
are fixed on a circular platform (4 m in diameter) which
can rotate on a vertical axis. The sound attenuation was
measured in the outdoor conditions for the wave-vectors
perpendicular to the cylinders’ vertical axis. The sculpture
thus corresponds to a cermet topology with a volume frac-
tion occupied by the scatterers of 0.066 and a sound-speed
ratio of 17.9. The experimentalits’ speculation, based on
their observation, was that the sound attenuation peak at
1.67 kHz could be ascribed to the formation of the first
(i.e., the lowest) gap in this sculpture. We call attention
to two important points: first, the sculpture represents a
2D periodicity in the x− y plane (provided the cylinders’
vertical axis is presumed to be along the z-axis); second,
the sculpture consists of finite (in length) cylinders and is
not strictly periodic (in the sense that it does not extend
infinitely in the x− y plane).

This experimental finding was soon followed by a rigor-
ous theoretical investigation embarking on the ideal situ-
ation and employing the actual experimental parameters
(we refer to the true dimensions of the sculpture) [23].
The complete band structure and density of states (DOS)
were computed for an ideal 2D periodic system to draw
the following conclusions. It was found that for the experi-
mental situation (i.e., for the cylinders 2.9 cm in diameter
and system-period of 10 cm implying the filling fraction
f = 0.066) there is no acoustic gap for frequencies below
6.4 kHz. However, the DOS reveal promiment minima at
1.7 and 2.4 kHz. These frequencies do agree with those
of the first two attenuation maxima in reference [22], and
are indeed related to the diffraction from [100] and [110]
planes (i.e., the X and M high symmetry points in the
Brillouin zone). Thus, even with idealization, Sempere’s
sculpture was seen to exhibit only pseudogaps – not full
gaps. We refer the readers to reference [23] for other details
regarding the circumstances where such a sculpture could
exhibit complete gaps. It is noteworthy that the term com-
plete was reserved in the sense that both experiment and
theory ignored the possibility of filtration of sound along
the vertical axis of the cylinders.

In this work, we consider a 3D geometry of rigid (for
example, stainless steel) spheres and cubes in a rarer
medium (for example, air) – analogous to Eusebio Sem-
pere’s sculpture in mind. In a sense, this complements the
previous work on 2D systems in reference [23] to inves-
tigate whether or not there could exist a complete gap
in the realistic situation of 3D systems. It has been found

that an fcc system gives rise to a genuine stop band, whose
frequency range can be raised (lowered) by decreasing (in-
creasing) the period of the system. However, bcc and sc
structures do not exhibit any gap at least as far as the
50th band. The details of the theory of band structure for
elastic/acoustic composites of arbitrary periodicity and in-
homogeneity can be found in reference [7]. However, the
methodological details needed to accomplish the problem
at hand are described succinctly in the following section.

2 Formalism

We consider a 3D periodic system made up of infinitely
rigid spheres and cubes in air – with fcc, bcc, and sc struc-
tures. The assumption of infinite rigidity means the modu-
lus of compressibility of the inclusions is infinite. However,
in order to keep the usual speed of sound, we are brought
to assume that the density of the inclusions is also infinite.
This hypothesis, which is very well justified for the metal-
lic (for example, stainless steel) inclusions in air, then im-
plies that the sound does not penetrate such inclusions,
and hence the propagation is confined and predominantly
only in the air. In other words there is no communication
between the air inside and outside. Then it really does not
matter whether these inclusions are hollow or solid within.
Therefore, the calculation at hand simplifies considerably
because the transverse speed of sound ct is zero in gases
(and liquids). Nevertheless, the ordinary wave equation
is inapplicable to the inhomogeneous media. The correct
wave equation – simply the equation of motion in the ab-
sence of an external force – is

ρ
∂2u

∂t2
=∇(ρc2l∇ · u), (1)

where ρ(r) is the mass density and cl(r) is the longitu-
dinal speed of sound. Only if ρc2l is independent of the
position, do all the three components of u(r, t) satisfy the
ordinary wave equation. In the general case, we observe,
from equation (1), that ∇× (ρu) = 0. Hence it is possible
to define a scalar potential Φ(r, t) such that ρu = ∇Φ.
Then equation (1) may be cast in the form

(C11)−1 ∂
2Φ

∂t2
=∇ · (ρ−1∇Φ) (2)

where C11 = ρc2l is the longitudinal elastic constant. Tak-
ing advantage of the 3D periodicity, we expand the quan-
tities ρ−1(r) and C−1

11 (r) in the Fourier series:

ρ−1(r) =
∑
G

σ(G)eiG·r,

C−1
11 (r) =

∑
G

ζ(G)eiG·r (3)

where G and r are the 3D reciprocal and direct lattice
vectors. The solution of equation (2) is given by means of
the Bloch theorem:

Φ(r, t) = ei(K·r−ωt)
∑
G

ΦK(G)eiG·r. (4)
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Here K is a 3D Bloch vector. With the aid of equations
(3, 4), equation (2) yields an infinite set of equations for
eigenvalues ω(K) and eigenvectors ΦK(G):∑

G′

[
σ(G−G′)(K + G) · (K + G′)− ζ(G−G′)ω2

]
× ΦK(G′) = 0. (5)

We apply this equation to a periodic system of spher-
ical and cubic inclusions (medium i) in a background
(medium b); the filling fraction of the spheres/cubes
is f . The corresponding densities (elastic constants)
are ρi, ρb(C11i, C11b). Then it is a simple matter to show
that [7]

σ(G)=

{
ρ−1
i f+ρ−1

b (1−f)≡ρ−1, for G = 0

(ρ−1
i −ρ

−1
b )F (G)≡∆(ρ−1)F (G), for G 6=0

(6)

where the structure factor F (G) is given by

F (G) =
1

Vc

∫
i

d3re−iG·r =
3f

(Gr0)3 [sin(Gr0)− (Gr0) cos(Gr0)]

f
(Gxl/2)(Gyl/2)(Gzl/2) sin(Gxl/2) sin(Gyl/2) sin(Gzl/2).

(7)

The first (second) expression in equation (7) corresponds
to the spherical (cubic) inclusions. Vc is the volume of the
unit cell, the integration is limited to a sphere (cube) of ra-
dius (side) r0 (l), and the filling fraction f = n(4π/3)r3

0/Vc
(nl3/Vc) for spherical (cubic) inclusions; where n refers to
the number of spheres (cubes) in the unit cell. An equa-
tion analogous to equation (6) can be written for ζ(G) in
terms of C−1

11 . Then equation (5) can be cast in the form∑
G′ 6=G

F (G−G′)

×
[
∆(ρ−1)(K + G) · (K + G′)−∆(C−1

11 )ω2
]
ΦK(G′)

+
[
ρ−1 |K + G|2 − C−1

11 ω
2
]
ΦK(G) = 0. (8)

Interestingly, this eigenvalue equation for dilatational
modes is formally the same as the eigenvalue equation for
transverse modes in the corresponding solid composites
with 2D periodicity (see, for example, Eq. (6) in Ref. [5]).
It is not difficult to rewrite equation (8) in the form of
a standard eigenvalue problem [7], which is in fact per-
formed at the computational level. Doing so ensures a
drastic saving in computational time.

For the purpose of computation, we limited the num-
ber of plane waves to 343. This resulted in a reliably very
good convergence; at least up to the lowest 20 bands. By
increasing the number of plane waves to 729, our results
change, after the 20th band, by less than 1%. This embold-
ens our confidence in the adequacy of our results based
on the 343 plane waves, particularly in the low-frequency
regime where the complete stop bands were found.

Fig. 1. The first Brillouin zone (a truncated octahedron) of
the face-centered-cubic lattice showing the symmetry points
and axes.

Note that our numerical results, presented in the fol-
lowing section, correspond specifically to the composite
system made up of stainless steel inclusions in air. How-
ever, the results remain quite unaltered if we impose the
conditions of infinite rigidity (see above). This is clearly
an artifact of the huge contrast in the material parameters
of the inclusions and the background.

3 Results and discussion

Figure 1 depicts the first Brillouin zone for the fcc struc-
ture which is of immediate relevance for the work reported
in this paper.

Figure 2 illustrates the band structure and the density
of states (DOS) for rigid spheres in a fcc structure; for
a filling fraction of f = 0.65. The lowest ten bands are
depicted. The plots are rendered in terms of the eigenfre-
quency ν = Ω(2πcl/a) (where a is the lattice constant

and cl =
√

(ρ−1/C−1
11 )) vs. dimensionless Bloch vector

k = Ka/2π. The left part of the triptych represents the
band structure in the five principal symmetry directions,
letting k scan only the periphery of the irreducible part
of the first Brillouin zone (see Fig. 1). The middle part
is the result of an extensive scanning of |k| in the irre-
ducible part of the Brillouin zone – the interior of this
zone and its surface, as well as the principal directions
shown in the left part of the figure. Each curve here corre-
sponds to some direction of k. The DOS in the right part
of the triptych has been calculated on the basis of the
scanning in the middle part, which corresponds to 1300
k–points within the irreducible part of the first Brillouin
zone. The three parts of the triptych in Figure 2 together
demonstrate that there is, indeed, a genuine, complete gap
(the shaded region) existing between the first and second
bands; and we consider such calculations as essential. It
should be pointed out that the crossing of the second and
third bands within the ΓX direction apparently leads one
to have an impression that it is the minimum (atX point)
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Fig. 2. Acoustic band structure and density of states for a fcc
array of rigid spheres in air.The plots are rendered in terms
of the frequency ν = Ω(2πcl/a) [where a is the lattice con-

stant and cl =
√

(ρ−1/C−1
11 )] vs. dimensionless Bloch vector

k = Ka/2π. The filling fraction is f = 0.65. and the period
is a = 10 cm. The triptych is comprised of three parts: In
the left panel, we plot the band structure in the five principal
symmetry directions, letting the Bloch vector k scan only the
periphery of the irreducible part of the first Brillouin zone. The
middle panel demonstrates a novel way of plotting the eigen-
values as a function of |k|; i.e., the distance of a point in the ir-
reducible part of the Brillouin zone from the Γ point. The right
panel illustrates the DOS. We call attention to the complete
stop–band (hatched region) extending throughout the Brillouin
zone.

of the third band which is the top of the stop band. How-
ever, since one always intends to count the bands (in the
increasing order of frequency) from the bottom, we prefer
to call the top of the stop band as the minimum of the
second band. We notice that there is no other band gap
existing at least up to the 50th band. We did not find any
gap for bcc and sc structures. Note that the existing band
gap in an fcc lattice is an indirect one in the language of
Solid State physics – with the minimum (maximum) of
the second (first) band lying at the high symmetry point
X (W ) in the Brillouin zone.

Next we plot the gap–widths of the two existing stop
bands within the first ten bands in the fcc structure in
Figure 3. The size of a complete gap is usually expressed
as the ratio of the gap-width and the midgap frequency.
The gap–width on the y-axis represents just a difference
in frequencies of the top and bottom of the stop band, for
a given filling fraction. As seen from the figure, the filling
fraction must exceed a certain minimum value, fmin, for
a gap to be opened. This leads us to infer that there is no
band gap for fmin < 0.54. The largest band gap occurs
at the close–packing when the spheres fill approximately
74% of the space (with fmax = π/

√
18, to be precise).

It is observed that, at the close-packing, the bands be-

Fig. 3. Gap–widths of the only existing two stop–bands vs. fill-
ing fraction for a fcc array of rigid spheres in air. The period of
the system (i.e., the lattice constant) a = 10 cm. The vertical
dotted line refers to the close–packing value (f = 0.7405). Ev-
ident is the fact that there is no acoustic stop–band for f ≤
54%. The inset depicts the upper stop band that opens up for
f ≥ 0.7287.

come relatively flatter and give rise to two complete stop
bands – the lower one is the same between first and sec-
ond bands, and the upper one occurs between the third
and the fourth bands. The latter is also an indirect gap –
defined by the maximum of the third band at the Γ -point
and the minimum of the fourth band at the X-point. The
upper band gap starts at f = 0.7287 and increases with
the filling fraction, just as the lower gap. The upper gap
is smaller (than the lower one) but it is also a complete
gap. The gap/midgap ratio in the limit of close-packing is
found to be 0.21 (0.013 ) for the lower (upper) gap.

That the fcc–lattice–arrangement allows the densest
packing when the spheres are crammed together, is true.
However, it is noteworthy that not all the spheres “kiss”
each other in the limit of close–packing – all the four
spheres at the corners of a face touch the one at the cen-
ter of this face (of a unit cell), but each of them remains
apart from its six next–nearest neighbors by a distance of
≈ 29% of the lattice constant. That implies that even the
fcc arrangement does not allow truly isolated vortices and
hence the sound can still spin around the rigid spheres in
the background medium (be it air or water). This is the
reason that the fcc geometry can (and does) allow an al-
most normal band structure in the limit of close-packing,
unlike the discrete bands in the 2D square lattice.

Finally we propose the fabrication of a multiperiodic
system in tandem that could be designed so as to give
rise to wider stop bands in the desired frequency range.
We compute the band–gap edges of the lowest, which is
also the widest, stop band as a function of the filling frac-
tion for a large number of systems with different periods
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Fig. 4. Inset: cross-section of a tandem structure of (periodic)
cubic arrays of rigid spheres in fcc arrangement– what is shown
is the front face of a unit cell of an individual periodic sys-
tem. The “wedges” numbered 1–9 correspond, respectively, to
the periods of 7.09, 7.72, 8.42, 9.17, 10.00, 10.89, 11.87, 12.94,
and 14.10 cms. Each of the nine sets produces a stop band,
whose upper and lower edges are plotted as a function of the
filling fraction f . For f = 0.65 (vertical solid line), the nine
stop bands join precisely so as to form a “super stop band”
within a frequency between 1.88 kHz and 4.09 kHz (see the
bold vertical frequency bar between the two horizontal dotted
lines). The vertical dotted line refers to the close–packing value
f = 0.7404. This is the most convenient way of demonstrating
the existence of stop–bands in a given periodic system.

(the lattice constants). The numerical results of such in-
vestigations are illustrated in Figure 4. The “wedges” la-
beled 1 to 9 correspond to different periods (in increasing
order from top to bottom) and are based on the numerous
band structure calculations– one for every value of the fill-
ing fraction f . These are really eigenvalue problems for the
reduced frequency Ω as a function of the Bloch vector k
scanned in all directions. It is important to note here (and,
in fact, throughout this paper) that the eigenfrequency ν
is inversely proportional to the period of the system. That
means that, given the specific medium in the background,
the frequencies of a “wedge” for a period of 1 cm will be
10 times higher than those of a “wedge” corresponding
to a period of 10 cm. Consider two dots on “wedge” # 1
for a filling fraction f = 0.65. The dots mark the upper
and lower edges of the stop band in the band structure and
the vertical distance between them is the width of the stop
band. Now we calculate the ratio of the two frequencies
(specified by the dots) and create the next “wedge” # 2
such that its upper edge (at the same f) crosses the lower
edge of “wedge” # 1. The same procedure is repeated for
all the nine “wedges” depicted in Figure 4. In fact, we
start with “wedge” # 5 that corresponds to a period of
a = 10 cm. We embark on the optimum situation which

Fig. 5. The same as in Figure 1, but for a fcc array of rigid
cubes in air. The filling fraction is f = 0.40 and the period
is a = 10 cm. The hatched region refers to the complete stop
band extending throughout the Brillouin zone.

refers to the lesser possible number of periodic composites
and the smaller possible filling fraction – the former point
concerns the cost and the latter hints to eventually avoid-
ing construction of a wall of rigid spheres. We appeal to
the filling fraction f = 65%, where only nine 3D periodic
composites in fcc are enough to guarantee a “super stop
band” from 1.88 kHz to 4.09 kHz. The range of the “su-
per stop band” is high-lighted by a bold vertical frequency
bar in Figure 4. Within the “super stop band” the mul-
tiperiodic system (designed in tandem) stands still and
total silence reigns. By this we mean that if one tries to
transmit a wide-band wave through the tandem structure
one will achieve a zero transmission within the range of
the “super stop band”. The completeness of such a “super
stop band” is assured due to the overlapping of the indi-
vidual stop bands in the neighboring composites. However,
the frequency range of such a “super stop band”, as men-
tioned above, is at the will of the designer – by increasing
(decreasing) the period of the composites one can lower
(raise) the frequency range of the stop bands and hence
of the “super stop band”.

Similar calculations were performed for cubic inclu-
sions in the fcc, bcc, and sc structures. Again the bcc and
sc structures did not exhibit any stop bands. The anal-
ogous results for the fcc structure are displayed in Fig-
ures 5-7. Figure 5 displays the band structure and DOS
for f = 0.40. There is a complete stop band from 2.65 kHz
to 3.14 kHz within the first ten bands. Figure 6 depicting
the variation of the gap-width with the filling fraction dic-
tates that there is no gap for f < 27.4%. We remark that
no other gap was found at least up to the 50th band. The
gap/midgap ratio in the limit of close-packing (f = 0.50)
is found to be 0.4; i.e., almost double of that achieved
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Fig. 6. Gap–widths of the only existing stop–band vs filling
fraction for a fcc array of rigid cubes in air. The period of the
system is a = 10 cm. The vertical dotted line refers to the
close–packing value (f = 0.50). Clearly, there is no stop–band
for f < 27.4%.

Fig. 7. The same as in Figure 4, but for a fcc array of rigid
cubes in air. The “wedges” numbered 1–9 correspond, respec-
tively, to the period of 5.08, 6.02, 7.13, 8.44, 10.00, 11.84, 14.02,
16.60, and 19.66 cms. Each of the nine sets produces a stop
band, whose upper and lower edges are plotted as a function
of the filling fraction f . For f = 0.40 (vertical solid line), the
nine stop bands join precisely so as to form a “super stop band”
within a frequency range between 1.35 kHz and 6.18 kHz (see
the bold vertical frequency bar between the two horizontal dot-
ted lines). The vertical dotted line refers to the close–packing
value f = 0.50.

from the lower gap in the case of spherical inclusions. Fig-
ure 7 demonstrates the design of the “super stop band”
within the frequency range between 1.35 and 6.18 kHz,
for f = 0.40, in the tandem structure made up of nine
3D periodic composites in fcc. The essential difference, as
compared to the spherical inclusions, is that the band gaps
are larger and these are opened at relatively lower filling
fractions. From the technological point of view, this has
an obvious advantage of designing ultrawideband filters
for noise with relatively lesser number of 3D composites
with large periods; and this is because of the lower filling
fractions serving the purpose. The rest of the discussion
related to the corresponding Figures 1-3 is still valid.

4 Summary

To conclude with, using simple mathematical tools em-
ploying the theory of elasticity, we have demonstrated that
a 3D periodic system of rigid spherical and cubical inclu-
sions in fcc arrangement can give rise to complete stop
bands. We see that a minimal filling fraction f ≈ 54%
(27%) is needed for the obtention of a forbidden band for
the spherical (cubic) inclusions in the fcc structure. The
3D tandem structures proposed here could be designed to
achieve large “super stop bands” within the desired fre-
quency range. The frequency range of such “super stop
bands” can be raised (lowered) by decreasing (increasing)
the period (or lattice constant) of the constituent systems.
In analogy to the photonic and phononic cases, in the fre-
quency range of stop bands sound and vibrations would
be forbidden. Thus a small vibrator (or defect) introduced
into an otherwise periodic system would remain unable to
generate sound within the gaps. The weakly disordered
system should, on the contrary, exhibit localized modes
within the gaps. The existence of complete stop bands is
thus closely associated with the Anderson localization of
sound and vibrations. Note that neither bcc nor sc struc-
tures are found to exhibit any gap for either of the two
shapes of the inclusions.

It is noteworthy that the existence of a complete gap in
these “phononic crystals” guarantees the perfect reflection
(and hence no transmission) of the excited acoustic wave
within the frequency range of the stop band. But this does
not mean that the intensity of the backscattered part of
the incoming wave vanishes. The technological interest be-
hind fabricating such “phononic crystals” is to enable the
medium to prohibit the incoming wave within a desired
(or tailor-made) forbidden frequency range. Consequently,
such periodic composites that exhibit complete stop bands
can behave as acoustic filters that prohibit sound propaga-
tion at certain frequencies while allowing practically free
(provided that the absorption is scaled down to a mini-
mum) propagation at others.

Figures 4 and 7 address indirectly a typical question
concerned with the strategy of unwanted noise abatement:
Is it feasible to devise low–tech means that can forbid the
sound propagation in the human audible range of frequen-
cies (20 Hz – 20 kHz)? This is a very important question
that has become a major concern of scientists, engineers,
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and architects, involved in the design of buildings and in
the planning of cities, working together to find technically
feasible solutions to the problem of noise. Fundamental
to bringing about a solution is a better understanding of
sound propagation through city streets and in the atmo-
sphere above a city. For such an understanding the avail-
ability of band structures is essential. This letter is simply
meant to emphasize the fundamental issues involved in the
sister subject of band–gap engineering of periodic compos-
ite systems. Our theoretical results suggest the feasibility
of designing an ultrawideband filter for environmental or
industrial noise in air (or water) according to the required
specifications.
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